P–Values, Computed Test Statistics & TI

What is P–Value?

Assuming the null hypothesis is true, P–Value is the probability of getting a value of a test statistic that is at least as extreme as the one suggested by the sample data.

How to use the P–Value with the given significance level α : Support H_0 when P–Value > α , Reject H_0 when P–Value $\leq \alpha$.	
When Computed Test Statistics Is z Use the absolute value of the given comput 1. One Tail–Test:	$z = z_0$ red test statistics. $P-Value = normalcdf(z_0 , E99, 0, 1)$
2. Two Tail–Test: Note: Press [2ND] [VARS] [normalcdf(]	$\mathbf{P-Value} = 2 \times \mathbf{normalcdf} (z_0 , E99, 0, 1)$
 When Computed Test Statistics Is t Use the absolute value of the given comput 1. One Tail–Test: 2. Two Tail–Test: Note: Press [2ND] [VARS] [tcdf(] 	$= t_0$ we test statistics. $\mathbf{P}-\mathbf{Value} = \mathbf{tcdf} (t_0 , E99, df)$ $\mathbf{P}-\mathbf{Value} = 2 \times \mathbf{tcdf} (t_0 , E99, df)$
When Computed Test Statistics Is χ 1. One Tail–Test: (a) When $\chi_0^2 > df - 0.667$: (b) When $\chi_0^2 < df - 0.667$:	$\begin{split} \chi^2 &= \chi_0^2 \\ \mathbf{P-Value} &= \chi^2 cdf(\chi_0^2, E99, df) \\ \mathbf{P-Value} &= \chi^2 cdf(0, \chi_0^2, df) \end{split}$
 2. Two Tail–Test: (a) When χ₀² > df - 0.667: (b) When χ₀² < df - 0.667: Note: Press [2ND] [VARS] [χ²cdf(] 	$\mathbf{P-Value} = 2 \times \chi^2 cdf(\chi_0^2, E99, df)$ $\mathbf{P-Value} = 2 \times \chi^2 cdf(0, \chi_0^2, df)$
 When Computed Test Statistics Is <i>R</i> 1. Left Tail–Test: 2. Right Tail–Test: 3. Two Tail–Test: (a) Compute both Right–Tail and Left (b) Multiply the smaller result by 2. 	$F = F_0$ $P-Value = Fcdf(0, F_0, Ndf, Ddf)$ $P-Value = Fcdf(F_0, E99, Ndf, Ddf)$ ft-Tail.

Note: Press [2ND] [VARS] [Fcdf(]